Archive

Posts Tagged ‘regenerative medicine’

Trophoblast Stem Cells: Another stem cell type isolated from the early embryo

November 28th, 2009

While embryonic stem cells are widely studied, a lesser known, but still significant, population of stem cells also resides within the early developing embryo: trophoblast stem cells (TSCs).

In brief, in most mammals the trophoblast is the part of the early embryo that later significantly contributes to the placenta of the fetus. The embryo and mother work together to create the placenta; while the trophoblast of the embryo becomes the chorion part of the placenta, the maternal uterine cells and surrounding blood vessels form the maternal placental components (Gilbert, 2003).

The placenta is the organ in mammals that connects the uterine wall to the developing fetus, bringing the two blood systems close together. The placenta allows the fetus to safely receive essential gases, such as oxygen, and nutrients from the mother. At the same time, it also lets the fetus expel waste through the mother’s kidneys. Additionally, the placenta releases essential pregnancy-related hormones and growth factors that, for example, let the uterus hold the fetus. Lastly, the placenta secretes immune response regulators to give the fetus immune protection against the mother (so that the fetus is not rejected by the mother’s immune system, as a tissue graft or organ transplant would be) (Rossant and Cross, 2001; Gilbert, 2003). Overall, the placenta plays a key role in early development; even small abnormalities in the placenta can lead to death of the fetus (Rossant and Cross, 2001).

sadad

Figure 1: The blastocyst is a hollow sphere made of approximately 150 cells and contains three distinct areas: the trophoblast, which is the surrounding outer layer that contains the trophoblast stem cells and later becomes the placenta, the blastocoel, which is a fluid-filled cavity within the blastocyst, and the inner cell mass, also known as the embryoblast, which can become the embryo proper, or fetus, and is where human embryonic stem cells are isolated from. When the late blastocyst is implanted in the uterine wall, at day 7 or 8 in human development, the trophoblast stem cells (in the trophoblast) quickly differentiate to form cells required for a firm implantation and, later, for the placenta.

While TSCs give rise to the placenta, these stem cells establish their identity long before the placenta develops; their fate is determined during the early embryo. Soon after the egg and sperm join during fertilization, the resultant zygote (fertilized egg cell) starts undergoing cell division. The resulting cells continue to undergo synchronous cell division. When the embryo is at the 16-cell stage (called a morula), it is a solid sphere of cells and already the precursors of the trophoblast cells are defined; the external, relatively larger cells mostly become the trophoblast cells. By the 64-cell stage, these cells’ fates are set; while the trophoblast will become the placenta, the other cells in the embryo can become the fetus. In mammalian development, this is the first differentiation event (Rossant and Cross, 2001; Gilbert, 2003).

A few cell divisions later, the trophoblast contributes to significant cellular rearrangements in the embryo which make it enter the blastocyst stage (see Figure 1). The blastocyst, which contains approximately 150 cells, is made up of three main parts: the blastocoel (an internal, fluid-filled cavity), the inner cell mass (ICM), and the trophoblast. When the embryo was a morula, the surrounding trophoblast precursors caused fluid to be secreted into the morula (utilizing sodium pumps in the trophoblast cell membranes); this secretion created the blastocoel cavity. The ICM is a cluster of cells inside the blastocyst that will later become the adult organism; human embryonic stem cells can be derived from the ICM, as was previously discussed. Lastly, the trophoblast is a monolayer of cells, specifically polarized epithelial cells, which surround the blastocoel and ICM, similar to their future role of surrounding the fetus as its placenta (Rossant and Cross, 2001; Gilbert, 2003).

Read more…

Trophoblast Stem Cells , ,

Bioengineering Organs and Tissues with Stem Cells: Recent Breakthroughs

October 11th, 2009

While there is great potential for using stem cells in regenerative therapies, there is still a ways to go before it can be considered a proven practice, although recent breakthroughs, and one specific trial in particular, makes it seem much closer. Recently, the first human tissue-engineered organ using stem cells was created and transplanted successfully into a patient. Other tissue regeneration efforts with stem cells have also recently made many breakthroughs, emphasizing the potential of using stem cells in future tissue transplants.

In the first reported instance of using stem cells to bioengineer a functional human organ, Paolo Macchiarini and his research group used a patient’s own stem cells to generate an airway, specifically a bronchus, and successfully grafted it into the patient to replace her damaged bronchus (See Figure 1). Macchiarini’s group bypassed the problem of immune rejection by using the patient’s own stem cells. Additionally, by combining a variety of bioengineering efforts, no synthetic parts were involved in the creation of the organ; it was made entirely of cadaveric and patient-derived tissues (Macchiarini et al., 2008; Hollander et al., 2009).

Caption

Figure 1. In order to create a patient-compatible replacement bronchus, Macchiarini’s group removed and decellularized a trachea from a cadaveric donor, grew cells removed from the patient on the trachea in a bioreactor, and then transplanted the bioengineered airway into the patient, successfully replacing their defective bronchus (Macchiarini et al., 2008).

Read more…

Bioengineering, Mesenchymal Stem Cells , , ,

Better Understanding Cancer and Induced Pluripotent Stem Cells Through Their Similarities

September 13th, 2009

Recently, many papers have come out that highlight connections between cancer and induced pluripotent stem cells (iPSCs), the latter of which was discussed previously. These papers hold many implications for not only iPSCs, but for our understanding of cancer as well. Additionally, these papers should not at all be thought of as invalidating the importance of iPSCs for studying and treating future therapies, but they should help us better understand what iPSCs are and how to use them appropriately.

The most recent and most publicized link between iPSCs and cancer is p53. p53, also known as protein 53 (53 referring to its molecular mass), is a well-studied protein whose normal function is important in preventing cancer. Though p53 has many different roles, they are quite related. In essence, the job of p53 is to make sure the cell does not accumulate DNA damage, or DNA mutations, which could eventually make the cell cancerous. When a cell has its DNA damaged, often from external stresses, p53 stops the normal cell cycle to fix the DNA damage. If the damage is too great to repair, p53 can prevent the cell from dividing, which would create more damaged cells; p53 initiates programmed cell death, or apoptosis. The potential tumor cell dies. Overall, p53 functions as a “tumor suppressor” to prevent abnormal cells from occurring and multiplying into a cancer (Vazquez et al., 2008). Consequently, it has been found that p53 is mutated in approximately 50% of all human tumors, and other tumors may have mutations in the pathway regulating p53 activity (Vazquez et al., 2008). p53 is therefore well-studied as an oncogene, or a gene that when not functioning normally can contribute to a normal cell becoming cancerous.

So what does p53 have to do with iPSCs? One recently discovered connection is with the generation of iPSCs. Recently, many research groups discovered that when p53 is deleted from, or damaged in, their cells, they could more easily become iPSCs (Hong et al., 2009; Kawamura et al., 2009; Utikal et al., 2009; Li et al., 2009; Zhao et al., 2008). As posted earlier, iPSCs are cells that were originally from adult tissues, but have been “reprogrammed” to be pluripotent stem cells, or stem cells able to become all the adult cells of the body, looking and functioning nearly identical to human embryonic stem cells (hESCs) (Takahashi et al., 2007; Yu et al., 2007).

Read more…

Cancer Stem Cells, Embryonic Stem Cells, Induced Pluripotent Stem Cells , , , ,

Limb Regeneration May Require Less Potent Stem Cells Than Previously Thought

August 15th, 2009

Salamanders have the amazing ability to re-grow a limb after it has been cut off. It is thought that by better understanding this regenerative ability, researchers will be able to apply this knowledge to humans and improve wound healing. Recently it was reported that salamander limb regeneration may occur in a different way than was previously thought; in short, the severed limb may not need pluripotent stem cells to regenerate, as was believed, but only multipotent or unipotent stem cells, stem cells with relatively restricted fates.

In salamanders, when a limb is severed the resultant limb bud undergoes a distinct process to regenerate the lost limb. The epithelial layer quickly spreads across the amputation site, closing the wound within 24 hours (Mescher, 1996). This epithelial layer thickens and becomes what is referred to as the wound epithelium (WE). As the immune system responds to the injury, macrophages and neutrophils arrive to clean up the wound site beneath the WE. The existing injured tissues and cells are broken down as well as the extracellular matrix, which is made up of proteins that surround cells to hold them together and stimulate normal cellular functions. It was thought that at this time in the regenerative process other resident cells below the WE become multipotent mesenchymal stem cells (MSCs) (see Figure). These eventually form a mass of MSCs called a blastema (Mescher, 1996; Brockes and Kumar, 2005). The blastema was thought to contain a homogenous group of pluripotent stem cells that had “dedifferentiated” or “redifferentiated,” meaning they had reverted back from their committed fates to function as very potent stem cells in order to recreate the limb. The WE stimulates the cells in the blastema to proliferate, making new cells and extracellular matrix, though more than is required for simple repair; the WE signals the blastema cells to regenerate the entire lost limb (Mescher, 1996; Kragl et al., 2009).

Caption

Limb regeneration in the salamander after limb amputation (time course going from the top down). Shortly after the limb is amputated, the epithelium layer covers the exposed limb bud, forming the wound epithelium (WE). A group of stem cells collects below this layer, forming the blastema (at the tip of the bud). The WE signals the stem cells below it to rebuild the limb, recreating the limb from the point of injury out towards the hand. The final regenerated limb is indistinguishable from the original.

Read more…

Mesenchymal Stem Cells, Non-Mammalian Stem Cells , ,

Human Embryonic Stem Cells: A Decade of Discovery, Controversy, and Potential

April 19th, 2009

Human embryonic stem cells (hESCs) recently celebrated the 10th anniversary of their discovery, and in the decade since their isolation they have possibly received more press coverage, both over their many potential applications as well as ethical concerns, than any other type of stem cell. In the last decade, much progress has been made in better understanding these cells and their capabilities. hESCs hold much promise not only for being cellular models of human development and function, but also for use in the field of regenerative medicine. However, due to ethical and application concerns, only recently have these cells made it to clinical trials.

sadad

Figure 1: The Blastocyst. Human embryonic stem cells are isolated from early-stage embryos in the late blastocyst stage, about four or five days after fertilization. The blastocyst is a hollow sphere made of approximately 150 cells and contains three distinct areas: the trophoblast, which is the surrounding outer layer that later becomes the placenta, the blastocoel, which is a fluid-filled cavity within the blastocyst, and the inner cell mass, also known as the embryoblast, which can become the embryo proper, or fetus, and is where hESCs are isolated from.

Though human embryonic stem cells were isolated just over a decade ago, embryonic stem cells were successfully isolated from other animals before this. Nearly 30 years ago, two groups independently reported the isolation of mouse embryonic stem cells (mESCs) (Martin, 1981; Evans and Kaufman, 1981). The mESCs were isolated from early-stage mouse embryos, approximately four to six days post-fertilization (out of 21 days total for mouse gestation). At this point in development, the embryo is in the late blastocyst stage (see figure 1). It was not until the mid-1990s that this feat was accomplished with non-human primates by Dr. James Thomson’s group (Thomson et al., 1995). Only a few years later, embryonic stem cells isolated from humans, once again by Thomson’s group, in 1998 (Thomson et al., 1998).

It is important to understand where hESCs come from in order to understand the ethical arguments that surround them, as well as their enormous, innate biological potential. Like mESCs, hESCs are isolated from early-stage embryos that are, specifically, in the late blastocyst stage, about four or five days after fertilization. After the fertilized egg cell starts cell division, what is referred to as the “blastocyst” occurs once the cell has divided into a hollow sphere made up of approximately 150 cells (see figure 1). At this point, the embryo has not even yet been implanted in the uterus. The blastocyst contains three distinct areas: the trophoblast, which is the surrounding outer layer that later becomes the placenta, the blastocoel, which is a fluid-filled cavity within the blastocyst, and the inner cell mass, also known as the embryoblast, which can become the embryo proper, or fetus. Embryonic stem cells can be created from cells taken from the inner cell mass (Stem Cell Basics: What are embryonic stem cells?, 2009). Because these cells are taken from such an early stage in development, they have the ability to become cells of any tissue type (except for the whole embryo itself), making them pluripotent. The pluripotency of hESCs is probably the trait that contributes most to their enormous potential, both as models of cell function and human development and, potentially, for uses in regenerative medicine. Being pluripotent and seemingly unlimited in supply separates hESCs from adult stem cells, which are multipotent or unipotent, able to become a more select group of cell types, and more limited in their cellular lifespan.

Read more…

Embryonic Stem Cells , , , ,