Posts Tagged ‘potency’

Direct Reprogramming: Turning One Cell Directly Into Another

February 9th, 2010

A goal of regenerative medicine has been to be able to take any cell from a person’s body and turn it in to any other cell type that may be desired (such as insulin-producing beta-cells for treating diabetes, or creating neurons to treat a neurodegenerative disease). This would eliminate several donor-compatibility problems, and potentially eliminate the need for a donor (who isn’t the patient) altogether. In 2007, human induced pluripotent stem cells (iPSCs) were created and this goal seemed a bit closer (Yu et al., 2007; Takahashi et al., 2007). iPSCs are cells that can be take from adult tissue and “reprogrammed” into embryonic stem cell (ESC)-like cells. Because iPSCs are pluripotent, these cells can then differentiate into (or become) any cell type (for more information, see the All Things Stem Cell article on “Induced Pluripotent Stem Cells: A New Stem Cell Line with a Long History”).

But is it possible to get rid of the iPSC-middle man? Is it possible to take any cell in the adult body and directly reprogram it, skipping the iPSC state, into the final desired cell type? There have been several studies over the last few decades that show this is quite possible, though it still has a ways to go before it can be regularly used in the clinic.

Reprogramming of cells to a different cell type is usually done by either somatic cell nuclear transfer (SCNT) or by using transcription factors. This post will focus on work done with transcription factors (for more information on using SCNT, see the “Induced Pluripotent Stem Cells…” post). Transcription factors are expressed (or made) at different levels in different cell types, and control what genes are expressed in every cell, making sure, for example, that a liver cell remains a liver cell and does not become a neuron. A famous example of how transcription factor expression can be used to alter a cell’s identity is the creation of iPSCs, where adult cells were forced to express transcription factors normally expressed in ESCs, which made the adult cells express genes specific to ESCs, and consequently become nearly identical to ESCs.

There are many degrees of direct reprogramming that have been reported over the last few decades. Several progenitor cells, cells that appear to be committed to their fate but not yet fully differentiated, have been shown to be capable of dedifferentiating into a different cell type; this process is called transdetermination. However, in a few cases it has been shown that a fully differentiated cell can actually become a different cell type; this process is called transdifferentiation (Graf and Enver, 2009). Over the last few decades, much progress has been made in direct reprogramming with muscle, blood, the pancreas, and neurons.


In the 1980s, the first reprogramming experiments using transcription factors took place. In 1987, a group reported using MyoD to make fibroblasts become muscle cells (Davis et al., 1987). Fibroblasts are cells important for wound healing (they secrete essential extracellular matrix proteins) and are common in connective tissues. The specific fibroblasts used were embryonic mouse fibroblasts. Because they were embryonic, this process is called transdetermination; the embryonic fibroblasts could probably differentiate more easily than adult fibroblasts (Graf and Enver, 2009). To convert the fibroblasts into muscle cells, the researchers transfected the fibroblasts with the cDNA of MyoD, forcing the cells to express MyoD (Davis et al., 1987). MyoD is normally only expressed in skeletal muscle, and it was later found to be a transcription factor involved in the differentiation of muscle cells and also a very early marker of muscle cell fate commitment.

Because of its success with the fibroblasts, MyoD was subsequently used in many other reprogramming studies to see what other cells it could make into muscle. It was found that while MyoD could indeed convert many different cell types into muscle, including fibroblasts in the dermal layer of skin, immature chondrocytes (cells in cartilage), smooth muscle, and retinal cells (Choi et al., 1990), MyoD could not turn any cell type into muscle; it was found incapable of making muscle out of hepatocytes (cells in the liver) (Schäfer et al., 1990).


In the 1990s, another key direct reprogramming factor was discovered, specifically involved in hematopoiesis. Hematopoiesis is the process by which the different types of blood cells are generated in the body (the term literally means “to make blood”). (For information on hematopoietic stem cells, see the All Things Stem Cell article “Hematopoietic Stem Cells: A Long History in Brief”). The central hematopoiesis-regulating factor discovered was the transcription factor GATA-1.

In 1995, a group reported that when GATA-1 was added to or removed from avian monocyte precursors, it could turn them into erythrocytes, megakaryocytes, and eosinophils (Kulessa et al., 1995). To understand the significance of these findings an inspection of hematopoiesis is required (see Figure). During hematopoiesis, hematopoietic stem cells (HSCs) (also called hemocytoblasts) give rise to all the different types of blood cells. Specifically, HSCs can first differentiate into either a common myeloid progenitor cell or a common lymphoid progenitor cell; either progenitor then further differentiates into specific blood cell types.

Alt text

Direct Reprogramming in the Hematopoietic System. Several different transcription factors have been found that can directly reprogram one type of blood cell into another. Changing the expression levels of GATA-1 in monocytes (red) can make them differentiate into eosinophils, erythrocytes, or megakaryocytes. Making B-cells (B lymphocytes) express C/EBP transcription factors (blue) can cause them to differentiate into macrophages. Lastly, C/EBPs can also inhibit the function of the transcription factor Pax5; when Pax5 is deleted in B-cells they differentiate into T-cells (T lymphocytes), though they first dedifferentiate into a common lymphoid progenitor.

Read more…

Embryonic Stem Cells, Induced Pluripotent Stem Cells, Reprogramming , , , , , , , ,

Chd1 Regulation of Chromatin May be Key for Embryonic Stem Cell Pluripotency

January 10th, 2010

While it is widely accepted that embryonic stem cells (ESCs) have the ability to become any type of cell, the molecular causes for this characteristic are still under much investigation, although one suspected player is chromatin. Recently, more evidence has been reported to support the important role of chromatin structure in maintaining an undifferentiated state in ESCs; the specific protein involved is called Chd1 (Gaspar-Maia et al., 2009).

Caption here

DNA is condensed on histones, creating a structure called chromatin. (Left) A single DNA strand (formed by a sugar-phosphate backbone and nucleotide base-pairs). (Right) Chromatin is the complex formed by histones (green) and DNA (blue); the DNA can be tightly wrapped around the histones. (DNA bound to histones may be inaccessible to the transcription machinery, preventing the transcription of these genes, while unbound DNA allows space for the machinery and the genes may be transcribed.) Chd1 may function in ESCs to maintain chromatin in an open (euchromatin) state and potentially promote pluripotency in this way.

Chromatin structure plays an important role in regulating what genes are created, or expressed, in a given cell. In eukaryote organisms (almost all large organisms, such as animals, plants, and fungi, but not bacteria), DNA forms a complex with proteins that are called histones. This complex of DNA and histones is called chromatin (see figure). Histones act as spools for the DNA to be spun around, binding to DNA and packaging it into tightly coiled units (without histones, the long DNA strands would take up a very large amount of space). Whether the histones bind to the DNA or not can be regulated through chemical modification of the histones (they can be methylated or acetylated). When histones are bound to the DNA, the chromatin is in a condensed state (called heterochromatin) and the genes are not expressed because they cannot be accessed by the gene transcription machinery. However, when the histones are not bound to the DNA, the chromatin is extended (called euchromatin), and the DNA can be accessed and these genes can be expressed.

It was previously believed that embryonic stem cells had lots of open chromatin (euchromatin), but this was not a proven theory. A study on stem cells and gene expression (Efroni et al., 2008) reported that, globally but at low-levels, more genes in ESCs are actively turned into protein than are in differentiated cells. Additionally, proteins involved in changing chromatin structure and transcribing genes were expressed at relatively high levels in ESCs too. When the function of some proteins involved in chromatin-remodeling was changed, normal ESC proliferation and differentiation was also affected. Overall, Efroni et al. suggested that the differentiation of ESCs may correlate with a loss of active transcription of the cell genome.

Read more…

Embryonic Stem Cells, Induced Pluripotent Stem Cells , ,