Archive

Archive for August, 2013

“Biology Bytes” Book & Blog

August 11th, 2013

Dr. Teisha J. Rowland, the author of “All Things Stem Cell,” recently published a book inspired by this blog. In the book Biology Bytes: Digestible Essays on Stem Cells and Modern Medicine, author Dr. Rowland discusses the history and latest scientific advancements in these fields of science, and many more. With a specific focus on issues that we increasingly encounter in the modern world around us, Dr. Rowland explores cutting-edge science through essays that can be easily digested: complex scientific concepts are broken down into key points based on the latest discoveries, technical jargon is clearly explained, and the impacts of these discoveries on our lives is explored. This book includes comprehensible explorations of a wide range of topics, including different types of stem cells and treatments they may be used in (with updated essays from “All Things Stem Cell”), the development and impact of in vitro fertilization (a technique responsible for over 1% of U.S. births today), how and why GMOs are made, the creation of vaccines to fight cancer, and fascinating food science behind delectable drinks such as beer, wine, and tea. For $4.99, you can own the book!

Additionally, Dr. Rowland recently started a general biology blog titled “Biology Bytes” (at www.biology-bytes.com). The blog has short articles posted twice a week (Tuesdays and Thursdays) on a variety of biology topics, so far ranging from melanoma in fish, toads that hatch eggs inside their skin, and the decline of the honey bees, to less technical coverage of stem cell topics. The most recent article, “Lab-Grown Meat: Triumphs and Challenges,” is on the muscle stem cells used to create the recently taste-tested stem cell “meat” patty — it is a less technical (and shorter) version of the “All Things Stem Cell” post “Cooking with Stem Cells.” Tune in to “Biology Bytes” for bi-weekly short stories on a wide array of fascinating biology topics, including more accessible explanations of stem cell biology.

Book , ,

Cooking with Stem Cells

August 11th, 2013

On August 5, 2013, a “lab-grown,” 5-ounce burger patty was taste tested in London, U.K. The patty had been grown from muscle stem cells that were isolated from cows. While this piece of “meat,” which was said to have tasted “close to meat,” represents significant progress in the field of making lab-grown food, the current approach needs to be improved before widespread use is feasible; the patty cost over $330,000 to make (not to mention probably significant culturing time in the lab to generate the 20,000 muscle strands used to make the patty). Luckily, there are many avenues that can be explored to optimize this technology. To understand them, it’s important to first understand the muscle stem cells themselves and how they’re cultured.

(Video credit: The Washington Post)

Origins of Muscle Stem Cells:
During development, the embryo has three different tissue types that, together with the germ cells, will make up the animal’s entire body. These are called the three germ layers. One of these tissue types, specifically the mesoderm, develops into skeletal muscle cells (along with other cell types, including cardiac muscle, kidney cells, red blood cells, and smooth muscle). Some stem cells that have been isolated from muscle appear to be mesenchymal stem cells. Mesenchymal stem cells (MSCs) got their name because they’re thought to primarily contain progenitors in the mesenchyme, which is a collection of cells mostly derived from mesoderm. (The majority of these cells later make up supportive structures throughout the body, such as bone, cartilage, connective tissue, muscle, adipose tissue, and the lymphatic and hematopoietic systems.) MSCs are typically multipotent, which means they can differentiate, or turn into, multiple different cell types. Specifically, MSCs are usually confirmed to be MSCs by showing that they can differentiate into three different, standard mesenchymal cell types: osteocytes (bone), chondrocytes (cartilage), and adipocytes (fat).

In muscle, there are two main groups of stem cells: satellite cells and muscle-derived stem cells (MDSCs) (Jankowski et al., 2002). Satellite cells were discovered decades ago (Mauro, 1961) and are commonly simply (and perhaps confusingly) referred to as muscle stem cells. It’s thought that these cells can regenerate damaged skeletal muscle and self-renew, but their ability to differentiate is rather limited; they can only make other types of muscle cells. (They’re basically unipotent.) MDSCs, on the other hand, are thought to be a type of multipotent mesenchymal stem cell and possibly a precursor of the satellite cells. But not only can the MDSCs differentiate into mesenchymal cell types, they have been found capable of becoming non-mesenchymal cell types as well. However, when picking the right stem cells to use for making lab-grown meat, the ability to differentiate into many different cell types is, for once, not an appealing trait.
Read more…

Mesenchymal Stem Cells , , , , , ,