Archive for March, 2009

Stem Cells Discovered in Menstrual Blood: Endometrial Regenerative Stem Cells

March 27th, 2009

Often the feasibility of using stem cells for regenerative therapies is limited by two factors: obtaining a significant number of cells and doing so in a relatively noninvasive manner. Because our bodies freely shed a limited and select number of cells, many stem cell types must be obtained using a rather invasive procedure. However, around the beginning of last year two laboratories independently reported the discovery of a new type of stem cell that may overcome both obstacles; stem cells were found to reside in menstrual blood (Meng et al., 2007; Patel et al., 2008). These stem cells, termed endometrial regenerative cells (ERCs), are not only harvested in a noninvasive manner and relatively readily available in large quantities, but they potentially overcome the problem of immune rejection in many female patients as well.


The uterus is lined by a layer of cells called the endometrium. During the menstrual cycle, the endometrium cycles between thickening and being broken down if fertilization does not occur. The break down and expulsion of the endometrium is called menstruation, or menstrual bleeding, and is the source of endometrial regenerative cells (ERCs).

Researchers suspected stem cells to be present in menstrual blood because stem cells were previously found to be present in the lining of the uterus. The wall of the uterus is lined by a layer of cells called the endometrium (see figure). To create ideal conditions for the uterus to accept and nurture an embryo, the endometrium lining becomes thicker and increases the number of blood vessels and glands within it. However, if implantation does not occur, the endometrium lining is broken down and shed. Overall, the endometrium is quite a hyperproliferative tissue, continuously being broken down and rebuilt; it is an ideal tissue to investigate for the presence of stem cells. In the menstrual cycle, the shedding is known as menstruation, or menstrual bleeding; the excreted menstrual blood is made up of blood as well as cells from the endometrium layer. Researchers previously reported the presence of stem cells in the intact endometrium lining of the uterus (Cho et al., 2004; Schwab et al., 2005; Du and Taylor, 2007). Because stem cells were found in the endometrium, researchers thought it likely that stem cells could also be found in the shed endometrium in the form of menstrual blood, which can be obtained in relatively large quantities in a much less invasive manner. However, the stem cells discovered in menstrual blood, ERCs, appear to be rather different from stem cells derived from the intact endometrium.

While stem cells from the intact endometrium appear to be mesenchymal stem cells (MSCs, as discussed earlier), ERCs do not; they are distinctly different not only in their undifferentiated state, but in the cells they can differentiate into as well. Researchers categorize stem cells into certain groups based off of, among other factors, their cell morphology and the proteins they express. An established stem cell group usually expresses a distinct set of proteins. ERCs, though morphologically appearing mesenchymal, were found to express only some, but not all, proteins characteristic of MSCs. Additionally, ERCs were reported to be able to differentiate into, or become, cells from the three different germ layers (see the previous post on MSCs for more details): mesoderm (muscle, bone, fat, cartilage, and endothelial cells), ectoderm (neurons), and endoderm (liver, pancreas, and lung cells) (Meng et al., 2007; Patel et al., 2008). However, the mesenchymal stem cells from the intact endometrium cannot generate cells from all three germ layers. Overall, ERCs were determined to be functionally distinct from endometrium MSCs (Meng et al., 2007; Hida et al., 2008).

Read more…

Endometrial Regenerative Cells , , , , , ,

Mesenchymal Stem Cells: A Diverse Family, Large and Still Growing

March 15th, 2009

Perhaps containing more different cell types than any other stem cell category, mesenchymal stem cells (MSCs) can be isolated from a wide variety of tissues in the human body. These cells have been grouped and labeled as “mesenchymal” because they are thought to have a common progenitor in the mesenchyme, an embryonic tissue (Caplan, 2005). In the developing vertebrate embryo, there are three distinct “germ layers,” or layers of cells: the endoderm, the mesoderm, and the ectoderm. Together with the germ cells, these three layers pattern out the entire body (see figure). The mesenchyme is a collection of cells mostly derived from the mesoderm that later becomes supportive structures throughout the body, including bone, cartilage, connective tissue, smooth muscle, adipose tissue, as well as the lymphatic and hematopoietic systems. Most MSCs are thought to contain progenitors in the mesenchyme (Gilbert, 2003; Conrad et al., 2009; Caplan, 2005).


The endoderm layer later becomes skin (epidermis) and the nervous system, the ectoderm becomes the digestive tract and respiratory system, and the mesoderm becomes bone, blood, muscles, connective tissue, and several organs (heart, kidney, and gonads).

However, calling MSCs “mesenchymal” can be misleading. Because this term refers to a precursor of the large MSC family, it is referring to an embryonic tissue, though the descendant MSCs can be found in both fetal and adult tissues. MSCs have been isolated from adult muscle, bone marrow, adipose tissue, cartilage, bone, potentially teeth (Caplan, 2005) as well as some fetal tissues (fetal liver, lung, amniotic fluid, and umbilical cord) (Phinney and Prockop, 2007). The MSCs isolated from any one of these tissues are multipotent and are usually shown to be MSCs by being able to differentiate into at least three different, standard mesenchymal cell types: osteocytes (bone), chondrocytes (cartilage), and adipocytes (fat) (Baksh et al., 2004). There is much evidence, though somewhat inconsistent, showing that MSCs can also differentiate into neuronal cells, which may be from mesenchyme derived from the endoderm instead of the mesoderm (Gilbert, 2003; Phinney and Prockop, 2007). Overall, MSC differentiation potentials can vary depending on what mesenchyme-derived tissue the MSCs were harvested from (Phinney and Prockop, 2007). However, MSCs cannot become hematopoietic cells (which are derived from hematopoietic stem cells), even though these cells are derived from the mesenchyme, making the label “mesenchymal” more deceptive (Gilbert, 2003; Caplan, 2005).

Read more…

Mesenchymal Stem Cells , , , , ,

Potential of Stem Cells to Cure HIV

March 1st, 2009

Recently, a patient with leukemia and human immunodeficiency virus (HIV) had apparent remission of both after stem cell transplants (Hütter et al., 2009). As discussed earlier, hematopoietic stem cells have been used in transplants to rescue patients with leukemia, but this method has not previously been as successful for treating HIV, the virus that causes acquired immunodeficiency syndrome (AIDS).

Once in the body, HIV primarily attacks the immune system, such as T cells, though some individuals have T cells that are naturally resistant to HIV infection. Over a decade ago, this resistance was found to be due to a mutation in a receptor that is normally on the cell surface of T cells, called chemokine receptor 5 (CCR5) (Liu et al., 1996). CCR5 is a chemokine receptor, meaning it normally binds and receives signals from chemokines, which are molecules cells can release and receive to cause an immune system response. CCR5 is thought to normally be involved in causing a response to infection, though its exact function is not fully understood. HIV normally interacts with CCR5 to gain entry into the target T cell, but some individuals have a mutation in the CCR5 gene, specifically a 32 base-pair deletion, that renders the resultant receptor completely nonfunctional and consequently prevents HIV from being taken into these cells (Liu et al., 1996).


The T cell membrane (shown as the purple, semicircle double line) allows entry of HIV (in pink) into the cell through multiple cell receptors anchored on the membrane, including CCR5.

Read more…

Hematopoietic Stem Cells , , , ,